首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   7篇
  国内免费   1篇
测绘学   2篇
大气科学   6篇
地球物理   29篇
地质学   20篇
海洋学   14篇
天文学   27篇
自然地理   6篇
  2023年   2篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2016年   4篇
  2015年   4篇
  2014年   5篇
  2013年   10篇
  2012年   4篇
  2011年   8篇
  2010年   7篇
  2009年   3篇
  2008年   7篇
  2007年   7篇
  2006年   4篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1994年   3篇
  1991年   2篇
  1990年   1篇
  1982年   2篇
  1976年   1篇
排序方式: 共有104条查询结果,搜索用时 203 毫秒
21.
The orbital structure of trans-neptunian objects (TNOs) in the trans-neptunian belt (Edgeworth-Kuiper belt) and scattered disk provides important clues to understand the origin and evolution of the Solar System. To better characterize these populations, we performed computer simulations of currently observed objects using long-arc orbits and several thousands of clones. Our preliminary analysis identified 622 TNOs, and 65 non-resonant objects whose orbits penetrate that of at least one of the giant planets within 1 Myr (the centaurs). In addition, we identified 196 TNOs locked in resonances with Neptune, which, sorted by distance from the Sun, are 1:1 (Neptune trojans), 5:4, 4:3, 11:8, 3:2, 18:11, 5:3, 12:7, 19:11, 7:4, 9:5, 11:6, 2:1, 9:4, 16:7, 7:3, 12:5, 5:2, 8:3, 3:1, 4:1, 11:2, and 27:4. Kozai resonant TNOs are found inside the 3:2, 5:3, 7:4, and 2:1 resonances. We present detailed general features for the resonant populations (i.e., libration amplitude angles, libration centers, Kozai libration amplitudes, etc.). Taking together the simulations of Lykawka and Mukai [Lykawka, P.S., Mukai, T., 2007. Icarus 186, 331-341], an improved classification scheme is presented revealing five main classes: centaurs, resonant, scattered, detached and classical TNOs. Scattered and detached TNOs (non-resonant) have q (perihelion distance) <37 AU and q>40 AU, respectively. TNOs with 37 AU<q<40 AU occupy an intermediate region where both classes coexist. Thus, there are no clear boundaries between the scattered and detached regions. We also securely identified a total of 9 detached TNOs by using 4-5 Gyr orbital integrations. Classical objects are non-resonant TNOs usually divided into cold and hot populations. Their boundaries are as follows: cold classical TNOs (i?5°) are located at 37 AU<a<40 AU (q>37 AU) and 42 AU<a<47.5 AU (q>38 AU), and hot classical TNOs (i>5°) occupy orbits with 37 AU<a<47.5 AU (q>37 AU). However, a more firm classification is found with i>10° for hot classical TNOs. Lastly, we discuss some implications of our classification scheme comparing all TNOs with our model and other past models.  相似文献   
22.
Classical trans-Neptunian objects (TNOs) are believed to represent the most dynamically pristine population in the trans-Neptunian belt (TNB) offering unprecedented clues about the formation of our Solar System. The long term dynamical evolution of classical TNOs was investigated using extensive simulations. We followed the evolution of more than 17000 particles with a wide range of initial conditions taking into account the perturbations from the four giant planets for 4 Gyr. The evolution of objects in the classical region is dependent on both their inclination and semimajor axes, with the inner (a<45 AU) and outer regions (a>45 AU) evolving differently. The reason is the influence of overlapping secular resonances with Uranus and Neptune (40–42 AU) and the 5:3 (a∼ ∼42.3 AU), 7:4 (a∼ ∼43.7 AU), 9:5 (a∼ ∼44.5 AU) and 11:6 (a∼ ∼ 45.0 AU) mean motion resonances strongly sculpting the inner region, while in the outer region only the 2:1 mean motion resonance (a∼ ∼47.7 AU) causes important perturbations. In particular, we found: (a) A substantial erosion of low-i bodies (i<10°) in the inner region caused by the secular resonances, except those objects that remained protected inside mean motion resonances which survived for billion of years; (b) An optimal stable region located at 45 AU<a<47 AU, q>40 AU and i>5° free of major perturbations; (c) Better defined boundaries for the classical region: 42–47.5 AU (q>38 AU) for cold classical TNOs and 40–47.5 AU (q>35 AU) for hot ones, with i=4.5° as the best threshold to distinguish between both populations; (d) The high inclination TNOs seen in the 40–42 AU region reflect their initial conditions. Therefore they should be classified as hot classical TNOs. Lastly, we report a good match between our results and observations, indicating that the former can provide explanations and predictions for the orbital structure in the classical region.  相似文献   
23.
In floodplains, anthropogenic features such as levees or road scarps, control and influence flows. An up‐to‐date and accurate digital data about these features are deeply needed for irrigation and flood mitigation purposes. Nowadays, LiDAR Digital Terrain Models (DTMs) covering large areas are available for public authorities, and there is a widespread interest in the application of such models for the automatic or semiautomatic recognition of features. The automatic recognition of levees and road scarps from these models can offer a quick and accurate method to improve topographic databases for large‐scale applications. In mountainous contexts, geomorphometric indicators derived from DTMs have been proven to be reliable for feasible applications, and the use of statistical operators as thresholds showed a high reliability to identify features. The goal of this research is to test if similar approaches can be feasible also in floodplains. Three different parameters are tested at different scales on LiDAR DTM. The boxplot is applied to identify an objective threshold for feature extraction, and a filtering procedure is proposed to improve the quality of the extractions. This analysis, in line with other works for different environments, underlined (1) how statistical parameters can offer an objective threshold to identify features with varying shapes, size and height; (2) that the effectiveness of topographic parameters to identify anthropogenic features is related to the dimension of the investigated areas. The analysis also showed that the shape of the investigated area has not much influence on the quality of the results. While the effectiveness of residual topography had already been proven, the proposed study underlined how the use of entropy can anyway provide good extractions, with an overall quality comparable to the one offered by residual topography, and with the only limitation that the extracted features are slightly wider than the investigated one. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
24.
25.
Experiments [T. Irifune (1994) Nature 370, 131–133; E. Ito et al. (1998) Geophys. Res. Lett. 25, 821–824; A. Kubo, M. Akaogi (2000) Phys. Earth Planet. Int. 121, 85–102] indicate that (Mg,Fe)SiO3 perovskite, commonly believed to be the most abundant mineral in the Earth, is the preferred host phase of Al2O3 in the Earth’s lower mantle. Aiming to better understand the effects of Al2O3 on the thermoelastic properties of the lower mantle, we use atomistic models to examine the chemistry and elasticity of solid solutions within the MgSiO3(perovskite)–Al2O3(corundum)–MgO(periclase) mineral assemblage under conditions pertinent to the lower mantle: low Al cation concentrations, P=25–100 GPa, and T=1000–2000 K. We assess the relative stabilities of two likely substitution mechanisms of Al into MgSiO3 perovskite in terms of reactions involving MgSiO3, MgO, and Al2O3, in a manner similar to the 0 Kelvin calculations of Brodholt [J.P. Brodholt (2000) Nature 407, 620–622] and Yamamoto et al. [T. Yamamoto et al. (2003) Earth Planet. Sci. Lett. 206, 617–625]. We determine the equilibrium composition of the assemblage by examining the chemical potentials of the Al2O3 and MgO components in solid solution with MgSiO3, as functions of concentration. We find that charge coupled substitution dominates at lower mantle pressures and temperatures. Oxygen vacancy-forming substitution accounts for 3–4% of Al substitution at shallow lower mantle conditions, and less than 1% in the deep mantle. For these two pressure regimes, the corresponding adiabatic bulk moduli of aluminous perovskite are 2% and 1% lower than that of pure MgSiO3 perovskite.  相似文献   
26.
Resonance occupation of trans-neptunian objects (TNOs) in the scattered disk (>48 AU) was investigated by integrating the orbits of 85 observed members for 4 Gyr. Twenty seven TNOs were locked in the 9:4, 16:7, 7:3, 12:5, 5:2, 8:3, 3:1, 4:1, 11:2, and 27:4 resonances. We then explored mechanisms for the origin of the resonant structure in the scattered disk, in particular the long-term 9:4, 5:2, and 8:3 resonant TNOs (median 4 Gyr), by performing large scale simulations involving Neptune scattering and planetary migration over an initially excited planetesimals disk (wide range of eccentricities and inclinations). To explain the formation of Gyr-resident populations in such distant resonances, our results suggest the existence of a primordial planetesimal disk of at least 45-50 AU radius that suffered a dynamical perturbation leading to 0.1-0.3 or greater eccentricities and a range of inclinations up to ∼20° during early stages of the Solar System history, before planetary migration.  相似文献   
27.
Two fast‐growing stalagmites from a cellar vault in Uppsala, southeast Sweden, are analysed for their luminescent properties. The results indicate that variations in luminescence intensity in the stalagmites are annual. Due to problems in finding a suitable absolute dating method this assumption cannot yet be firmly tested; however, results from radiocarbon dating of one of the stalagmites do not contradict the proposal that the laminae are annual. If so, the speleothems have been growing for 10–15 years with a growth rate of 3–8 mm per year, which is a similar rate to other fast‐growing speleothems in Great Britain that have formed from the reaction of lime mortar and carbon dioxide. It is likely that the assumed annual laminae of the luminescence record represent a flush of organic material.  相似文献   
28.
29.
I study the responses of two different triaxial induction tools to invaded dipping anisotropic formations. I show that the triaxial measurements have generally higher sensitivity to the radial invasion profile, compared to the conventional induction measurements. This enables accurate interpretation of both the anisotropic formation properties and the invasion parameters. Multi‐spacing and single‐spacing multi‐frequency triaxial induction tools can both be used for this purpose. Failure to take the invasion properties into account may lead to misinterpretation of the vertical formation resistivity. Symmetrization of the apparent conductivity matrix opens ways for a visual interpretation of triaxial induction logs for the formation and the invasion zone properties. This technique enables simpler and faster inversion algorithms. I study how the effect of a conductive annulus forming around the invasion zone couples with effects of the dipping anisotropy and the dipping boundaries and show when these effects are additive. Thus, a visual detection of log parts affected by a conductive annulus becomes possible. The key tool for interpretation in complex 3D scenarios is efficient modelling software. I use a 3D finite‐difference modelling approach to simulate responses of induction logging tools of the new generation. Its high efficiency enables simultaneous multi‐spacing and multi‐frequency computing of the tool responses to arbitrary 3D anisotropic formations that made the study possible.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号